Exercice 1

À l'aide d'une table de vérité, démontrer que $A \Rightarrow B$ et $(\neg B) \Rightarrow (\neg A)$ ont les même valeurs de vérité.

Exercice 2

À l'aide d'une table de vérité, démontrer que $\neg(A \lor B)$ et $(\neg A) \land (\neg B)$ ont les même valeurs de vérité.

* Exercice 3

Écrire à l'aide de quantificateurs les propositions suivantes et leur négation :

- 1) f est croissante sur [a, b].
- 2) f est majorée sur [a, b].
- 3) La suite (u_n) est bornée.
- 4) La suite (u_n) tend vers $+\infty$.
- 5) p est un nombre premier (avec $p \in \mathbb{N}$).

- 6) m a la même parité que n.
- 7) Il existe un entier que l'on peut écrire comme somme de deux carrés.
- 8) 7 est le plus petit entier qu'on ne peut pas écrire comme la somme de trois carrés.

Exercice 4

Pour chacune des propositions suivantes, déterminer si elle est vraie ou fausse, puis exprimer leur négation.

- 1) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, n \ge x$
- 2) $\exists x \in \mathbb{R}, \exists n \in \mathbb{N}, n \geq x$
- 3) $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, n \geq x$
- 4) $\exists x \in]0, +\infty[, x > 0, \forall y \in]0, +\infty[, x < y]$

- 5) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, (x^2 = y) \land (y^2 = -x)$
- 6) $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0, \exists x_0 \in \mathbb{R}, 0 < x_0 < \varepsilon$
- 7) $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, (2k = n) \lor (2k + 1 = n)$

Pour chacune des implications suivantes, déterminer si elle est vraie ou fausse, exprimer sa réciproque et dire si elle est vraie ou fausse.

- 1) Si ABC est un triangle rectangle, alors la somme de ses angles (en radians) est égale à π .
- 2) Si ABC est un triangle, alors $AB^2 + AC^2 = BC^2$.
- 3) Si x > 0, alors -x + 1 < 0
- 4) Si $(a+b)^2 = a^2 + b^2$, alors a = 0 ou b = 0.
- 5) Si f est une fonction croissante sur [a, b], alors f(a) < f(b)
- 6) Si f est une fonction monotone sur [a, b], alors

$$\forall c \in]a,b[, \quad (f(c)-f(a))\times (f(b)-f(c)) \geq 0$$

* ercice 6 ----

Soient $a, b, c, d \in \mathbb{Z}$. Montrer que $a + b\sqrt{2} = c + d\sqrt{2} \iff a = c$ et b = d.

Exercice 7

Résoudre dans $\mathbb R$ les inéquations suivantes :

- 1) $|4-x| \le 1$
- 2) $\sqrt{(x-2)^2} > 1$

3) $|x-3|+|x+4| \le 1$

*
Exercice 8

Soit $n \in \mathbb{N}$. Montrer que si $n \in \mathbb{N}$ alors $\frac{n(n+1)}{2} \in \mathbb{N}$.

- Exercice 9

Soit $n \in \mathbb{N}$. Montrer que $n(n^2 + 5)$ est divisible par 3.

*
Exercice 10 -

Résoudre par analyse synthèse l'équation $\sqrt{4x+5} = x$

*
- Exercice 11

Montrer par analyse-synthèse que toute fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.

Exercice 12 -

Résoudre dans $\mathbb R$ les inéquations d'inconnue x suivantes :

a) $|x^2 - 100| \ge 96$

b) $|x-1| \ge |x+2|$

c) $|x-5| + |6-2x| \ge 4$

Exercice 13

Soient $x, y \in \mathbb{R}$. Montrer que si $\forall \varepsilon > 0, x < y + \varepsilon$, alors $x \leq y$.

Exercice 14

Soit n un entier non nul et soit (x_1, x_2, \ldots, x_n) une famille de n réels appartenant à $[0, \pi]$.

Montrer que si $\sin(x_1) + \sin(x_2) + \dots + \sin(x_n) \ge \frac{n\sqrt{3}}{2}$, alors il existe $i \in \mathbb{N}, 1 \le i \le n, x_i \in \left[\frac{\pi}{3}; \frac{2\pi}{3}\right]$

*
Exercice 15

Déterminer si les propositions suivantes sont vraies ou fausses (démonstration requise), et écrire leurs négations :

a) $\exists n \in \mathbb{N}, \forall x \in [-\frac{1}{2}; \frac{1}{2}], \frac{1}{x^2} \ge n$

d) $(\forall a \in \mathbb{R}, \ a^n = a^m) \iff (m = n)$ (où m et n sont deux entiers)

b) $\forall x \in \mathbb{R}_+, \exists q \in \mathbb{Q}, \ q^2 = x$

- e) $(\forall x \in \mathbb{R}, (ax)^2 = (bx)^2) \iff (a = b)$ (où a et b sont
- c) $\forall y \in \mathbb{Z}, \exists n \in \mathbb{N}, \exists k \in \{-2; 2\}, \ y = \frac{kn}{2}$
- Exercice 16 -

Si a et b sont deux réels, on note $\max(a,b)$ (respectivement $\min(a,b)$) le plus grand élément entre a et b (respectivement le plus petit), autrement dit $\max(a,b) = \left\{ \begin{array}{ll} a & \text{si } b \leqslant a \\ b & \text{si } a < b \end{array} \right.$ (respectivement $\min(a,b) = \left\{ \begin{array}{ll} a & \text{si } a \leqslant b \\ b & \text{si } b \leqslant a \end{array} \right.$

 $\text{Montrer que } \forall (a,b) \in \mathbb{R}^2, \, \max(a,b) = \frac{a+b+|a-b|}{2} \text{ et } \min(a,b) = \frac{a+b-|a-b|}{2}.$

_____ Exercice 17 —

Résoudre dans \mathbb{R} les équations $\sqrt{x^3 + x^2 - x} = \sqrt{2x - 4x^2 - x^3}$ et $\sqrt{x - 2x^3} = \sqrt{5x^2 - 2x}$

Exercice 18 -

Déterminer l'ensemble des fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ telles que $\forall x, y \in \mathbb{R}$, f(x)f(y) - f(xy) = x + y.